118 research outputs found

    A Technical Framework for Musical Biofeedback in Stroke Rehabilitation

    Get PDF

    Sound-Guided 2-D Navigation:Effects of Information Concurrency and Coordinate System

    Get PDF

    An Embodied Sonification Model for Sit-to-Stand Transfers

    Get PDF
    Interactive sonification of biomechanical quantities is gaining relevance as a motor learning aid in movement rehabilitation, as well as a monitoring tool. However, existing gaps in sonification research (issues related to meaning, aesthetics, and clinical effects) have prevented its widespread recognition and adoption in such applications. The incorporation of embodied principles and musical structures in sonification design has gradually become popular, particularly in applications related to human movement. In this study, we propose a general sonification model for the sit-to-stand (STS) transfer, an important activity of daily living. The model contains a fixed component independent of the use-case, which represents the rising motion of the body as an ascending melody using the physical model of a flute. In addition, a flexible component concurrently sonifies STS features of clinical interest in a particular rehabilitative/monitoring situation. Here, we chose to represent shank angular jerk and movement stoppages (freezes), through perceptually salient pitch modulations and bell sounds. We outline the details of our technical implementation of the model. We evaluated the model by means of a listening test experiment with 25 healthy participants, who were asked to identify six normal and simulated impaired STS patterns from sonified versions containing various combinations of the constituent mappings of the model. Overall, we found that the participants were able to classify the patterns accurately (86.67 ± 14.69% correct responses with the full model, 71.56% overall), confidently (64.95 ± 16.52% self-reported rating), and in a timely manner (response time: 4.28 ± 1.52 s). The amount of sonified kinematic information significantly impacted classification accuracy. The six STS patterns were also classified with significantly different accuracy depending on their kinematic characteristics. Learning effects were seen in the form of increased accuracy and confidence with repeated exposure to the sound sequences. We found no significant accuracy differences based on the participants' level of music training. Overall, we see our model as a concrete conceptual and technical starting point for STS sonification design catering to rehabilitative and clinical monitoring applications

    Reducing the number of EMG electrodes during online hand gesture classification with changing wrist positions

    Get PDF
    Abstract Background Myoelectric control based on hand gesture classification can be used for effective, contactless human–machine interfacing in general applications (e.g., consumer market) as well as in the clinical context. However, the accuracy of hand gesture classification can be impacted by several factors including changing wrist position. The present study aimed at investigating how channel configuration (number and placement of electrode pads) affects performance in hand gesture recognition across wrist positions, with the overall goal of reducing the number of channels without the loss of performance with respect to the benchmark (all channels). Methods Matrix electrodes (256 channels) were used to record high-density EMG from the forearm of 13 healthy subjects performing a set of 8 gestures in 3 wrist positions and 2 force levels (low and moderate). A reduced set of channels was chosen by applying sequential forward selection (SFS) and simple circumferential placement (CIRC) and used for gesture classification with linear discriminant analysis. The classification success rate and task completion rate were the main outcome measures for offline analysis across the different number of channels and online control using 8 selected channels, respectively. Results The offline analysis demonstrated that good accuracy (> 90%) can be achieved with only a few channels. However, using data from all wrist positions required more channels to reach the same performance. Despite the targeted placement (SFS) performing similarly to CIRC in the offline analysis, the task completion rate [median (lower–upper quartile)] in the online control was significantly higher for SFS [71.4% (64.8–76.2%)] compared to CIRC [57.1% (51.8–64.8%), p < 0.01], especially for low contraction levels [76.2% (66.7–84.5%) for SFS vs. 57.1% (47.6–60.7%) for CIRC, p < 0.01]. For the reduced number of electrodes, the performance with SFS was comparable to that obtained when using the full matrix, while the selected electrodes were highly subject-specific. Conclusions The present study demonstrated that the number of channels required for gesture classification with changing wrist positions could be decreased substantially without loss of performance, if those channels are placed strategically along the forearm and individually for each subject. The results also emphasize the importance of online assessment and motivate the development of configurable matrix electrodes with integrated channel selection

    Toward Standardizing the Classification of Robotic Gait Rehabilitation Systems

    Get PDF
    • …
    corecore